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Abstract. The exact results for the topological susceptibility and the mean value of the 
topological charge density in ( 1  + 1)-dimensional lattice gauge theory are obtained by means 
of the Hamiltonian method. 

Topology of lattice gauge theory (LGT) is an important problem that has been noted 
in recent years. How to define the topological charge on a lattice is a difficult problem, 
because continuity in spacetime is lost on the lattice. Liischer [ 11 answered this problem 
by giving a method for constructing transition functions of lattice gauge fields. He 
pointed out that in order to get a satisfactory definition of topological charge Q for 
all lattice gauge fields the charge Q must have the following properties. 

(i) Q is defined for all lattice gauge fields with periodic boundary condition (PBC), 

except for a set of fields which has zero measure in the functional integral. 
(ii) Q assumes integer values only. 
(iii) Q =Z, q ( n ) ,  where the topological charge density q ( n )  is a local function of 

(iv) In the continuum limit a + 0, q(  n) agrees with that of the continuum: 
the lattice gauge field and n runs over lattice sites. 

where a is the lattice spacing and and E ~ , ,  are respectively 4~ and 2~ total 
antisymmetric tensors. 

Panagiotakopoulos [2] discussed ZD U(l )  LGT by means of the method in [ l ]  and 
obtained the numerical results for the topological susceptibility xt = (Q2) /  V ( V being 
the volume of the lattice). The numerical results for xt in 4~ SU(2) and SU(3) LGT 

have been given by the DESY group in [3]. The purpose of the present letter is to 
study the topological charge of (1 + 1)-dimensional U( 1) LGT with PBC by means of 
the Hamiltonian method for LGT. Thus the transition function for (1 + 1)-dimensional 
U( l )  LGT is constructed by application of Liischer's method. Exact results for the 
topological charge Q and xt for (1 + 1)-dimensional U( 1) LGT is obtained by use of 
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the relation between the 0 vacuum energy and the topological susceptibility given by 
[4]. The results are compared with those in [2]. 

We study (1+ 1)-dimensional U ( l )  LGT with PBC (period= L ) ,  i.e. 

U,(n) = Up(n  + mL) V m E Z  (1) 
for each link variable U,(n) E U(1). 

We divide the lattice into cells c ( n )  

c ( n )  = (x  E R 106 (xp - n,) 1, p = 0 , l ) .  (2) 
The transition function u,,,(x) valued gauge group, which is a gauge transformation, 
is defined on the intersection of c ( n )  and c ( n  - $ ) , f ( n ,  p )  = c ( n )  n c ( n  - 6). Transition 
functions must satisfy the cocycle condition at the intersection point x of four cells, i.e. 

(3) 

(4) 

u,-8,l(YO= 1)un,0(y, = 0) = ~ n - i , o ( Y ,  = l)un,1(y0=O) 

u,,(x) = ~ f I t m L , , ( X  + mL).  

where y,  = x, - n,, p = 0, 1. Besides, due to PBC, 

We define a parallel transporter from each corner 

of the cell c ( n )  to n :  
W " ( X )  = U o ( n ) Z ~ U l ( n + z o 6 ) Z ~  

U,(n)O= 1 U,(n) = Up(n). 

The transition function can be defined from w"(x) 

(x)  = w"-"x) w (x)-'. 

We can show from (7) that 

vn,o(y, = 0) = v,,o(y, = 1) = U,( n - 6) 
v,,,(.Yo = 0) = U,(n  - i, 
un,l (yo = 1) = U,( n - i) Ul ( n  - i + 6) U,( n)-I. 

(7 )  

Extending (8) and (9) respectively to f ( n ,  0) and f (  n, 1) 

un,o(yJ = Uo(n -6) VYI E f ( 4  0) (10) 
un,l (yo)  = ( U,  ( n  - i) - I  U,( n - i) U ,  ( n  - i + 6) U,( n ) - I )  )'U U ,  ( n  - i). ( 1 1) 

Equations (10) and (1 1) obviously satisfy (8) and (9). Furthermore, it is easy to show 
the cocycle condition (3) holds also. For convenience in the Hamiltonian formulation 
we take the temporal gauge, i.e. Uo(n)  = 1. Then we obtain 

i.e. u , , ( x )  is a continuous function of y o .  
The topological charge [2] can be defined from transition functions 
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Let 

U,(n) =exp(iagAi,(n)). (14) 
Under the temporal gauge, we can obtain from (13)  

2IT n 

where A = d,A, and n, represents the space component of n. Integrating over t gives 

From (14) and the PBC, we have 

exp(iagAi,(nx, 0 ) )  = exp(iagA,(nx, L ) )  (17) 
so the difference between Al(nx, L )  and Al(n,, 0) must be an integer multiple of 27r/ag.  
As a result of (16), Q is strictly an integer for (1 + 1)-dimensional U ( l )  LGT. 

In ( 1  + 1)-dimensional U( 1) LGT, the Lagrangian is 

Introducing the O parameter, the action becomes 

Hence we have from (15) and (19) 

Let 

Thus the Hamiltonian is 

1 
H,=rI;A1-Lo=-C 

2a n ,  

g2a e *  
2 n ,  27r 

= - c (n, + -) 
where n, = (l/ag)II; (analogous to the electric field) is a generator of the U( l )  group, 
and its eigenvalues are 0, f l ,  *2, .  . . . The vacuum is the lowest eigenstate of H; it 
can be labelled by using the eigenvalue of U, 

(10) - - r r < O < I T  

7r<e<37r  
10) = ir:" - 3 ~  < 6 < -IT 

etc. 
For m7r < 0 < ( m  + l ) ~ ,  m = 0, *l, *2, . . . , therefore, the 6 vacuum energy is 

2 

when m = 21 
1 
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I I I I 

- 4 n  -3n -2n -IT 0 

and 

I I I 
n 2n 3n 4n 

e 

when m = 2 f + 1  
1 

Nu 

where N is the number of space lattice sites and f = 0, +l, + 2 , .  . . . Thus we can see 
from (24) and (25) that the I9 vacuum energy exhibits periodic structure, as shown in 
figure 1 .  

From [4] we know the relation between the topological susceptibility and the I9 
vacuum energy 

and from (24)-(26) we can obtain 

,yt = 1/4.rr2pa2 

where p = l /g2u2. The relation between the mean value of the topological charge 
density and the 0 angle is 

where I = 0, *l ,  + 2 ,  . . . . The mean value of the topological charge density is a periodic 
function of 0, as shown in figure 2 .  

In this letter we have derived exact results for the topological charge density by 
using the Hamiltonian method for (1 + 1)-dimensional U( 1)  LGT. Numerical results 
for the topological susceptibility have been given in [ 2 ]  for the Euclidean lattice. In 

Figure 1. The periodic structure of the 0 vacuum energy. 

Figure 2. The relation between the mean value of the topological charge density and the 
0 angle. 
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our Hamiltonian formulation, the time direction is continuous while the space direction 
is discrete. Therefore, our results can only be compared with the numerical data in 
the scaling region. Our results correspond to the p +cc limit. The tendency of the 
data given in [2] for large p agrees with our result. 

From equations (24), (25) and (28), we have 

( Q ) o l  V=aEelde (29) 

and 

i.e. aE,/d8, and thereby the mean value of the topological charge density, is discon- 
tinuous at 8 = (21+ l ) ~  where the 8 vacuum energy attains its maximum value. It is 
possible that there are physical effects. 

The term 8 1 2 ~  in (22) can be considered as a background electric field. The 8 
parameter, which relates to the existing background electric field, corresponds to 
different values of the background field. There is a similar situation in the Schwinger 
model. 

Consideration of the fermion effect and extension of the above analysis to the 
four-dimensional case remain to be investigated further. 

Note added. After this work was completed, we noted a paper by Smit and Vink [ 5 ]  in which the topological 
susceptibility for (1 + 1)-dimensional U( 1) LGT has been obtained including scaling violation. Our results 
are exact in the Hamiltonian formulation and are valid even for finite p in this formulation. Scaling violation 
will occur when the time axis is also discretised. 
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